1,778 research outputs found

    Aqueous Turbulence Structure Immediately Adjacent to the Air - Water Interface and Interfacial Gas Exchange

    Get PDF
    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly

    Synthesis and protective effect of pyrazole conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in sepsis rats via attenuation of NF-κB, oxidative stress and apoptosis

    Get PDF
    The current work was conducted to elucidate the pharmacological effect of pyrazole-conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in rats in sepsis and their mechanism of action. Various pyrazole-conjugated imidazo[1,2-a]pyrazine derivatives have been synthesized in a straightforward synthetic route. They exhibited a diverse range of inhibitory activity against NF-ĸB with IC50 ranging from 1 to 94 µmol L–1. Among them, compound 3h [(4-(4-((4-hydroxyphenyl)sulfonyl)phenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)(8-(methylamino)imidazo[1,2-a]pyrazin-2-yl)methanone] was identified as the most potent NF-κB inhibitor with IC50 of 1.02 µmol L–1. None of the synthesized compounds was found cytotoxic to normal cell-line MCF-12A. The pharmacological activity of the most potent NF-ĸB inhibitor 3h was also investigated in cecal ligation and puncture (CLP)-induced sepsis injury of the lung in rats. Compound 3h was administered to rats after induction of lung sepsis, and various biochemical parameters were measured. Results suggested that compound 3h significantly reduced lung inflammation and membrane permeability, as evidenced by H&E staining of lung tissues. It substantially reduced the generation of pro-inflammatory cytokines (TNF-α, IL-1B, IL-6) and oxidative stress (MPO, MDA, SOD). It showed attenuation of NF-ĸB and apoptosis in Western blot and annexin-PI assay, resp. Compound 3h also reduced the production of bronchoalveolar lavage fluid from the lung and provided a protective effect against lung injury. Our study showed the pharmacological significance of pyrazole-conjugated imidazo[1,2-a]pyrazine derivative 3h against acute lung injury in sepsis rats

    Near Surface Turbulence and Gas Exchange Across the Air-Sea Interface

    Get PDF

    Phase imaging in scanning transmission electron microscopy using bright-field balanced divergency method

    Full text link
    We introduce a phase imaging mechanism for scanning transmission electron microscopy that exploits the complementary intensity changes of transmitted disks at different scattering angles. For scanning transmission electron microscopy, this method provides a straightforward, dose-efficient, and noise-robust phase imaging, from atomic resolution to intermediate length scales, as a function of scattering angles and probe defocus. At atomic resolution, we demonstrate that the phase imaging using the method can detect both light and heavy atomic columns. Furthermore, we experimentally apply the method to the imaging of nanoscale magnetic phases in FeGe samples. Compared with conventional methods, phase retrieval using the new method has higher effective spatial resolution and robustness to non-phase background contrast. Our method complements traditional phase imaging modalities in electron microscopy and has the potential to be extended to other scanning transmission techniques and to characterize many emerging material systems.Comment: Updated link to codes; Fixed wrong labeling in Figures 3; Updated Figure

    Effects of particle size and content of RDX on burning stability of RDX-based propellants

    Get PDF
    Abstract Particle size and content of RDX are the two main factors that affect the burning stability of RDX-based propellants. However, these effects and the corresponding mechanisms are still controversial. In this work, we investigated the physicochemical processes during burning and the corresponding mechanisms through the technologies of structure compactness analysis on the base of voidage measurement and theoretical interfacial area estimation, apparent burning rate measurement using closed vessel (CV) and extinguished burning surface characterization relying on interrupted closed vessel (ICV) and scanning electron microscope (SEM). The results indicate that the voidage increased with the increase of RDX content and particle size due to the increasing interfacial area and increasing interface gap size, respectively. The apparent burning rate increased with the increase of RDX particle size because of the decreasing RDX specific surface area on the burning surface, which could decrease the heat absorbing rates of the melting and evaporation processes of RDX in the condensed phase. Similarly, the apparent burning rate decreased with the increase of RDX content at pressures lower than around 55 MPa due to the increasing RDX specific surface area. Whereas, an opposite trend could be observed at pressures higher than around 55 MPa, which was attributed to the increasing heat feedback from the gas phase as the result of the increasing propellant energy. For propellants containing very coarse RDX particles, such as 97.8 and 199.4 μm average size, the apparent burning rate increased stably with a flat extinguished surface at pressures lower than around 30 MPa, while increased sharply above around 30 MPa with the extinguished surface becoming more and more rugged as the pressure increased. In addition, the turning degree of u-p curve increased with the increase of coarse RDX content and particle size, and could be reduced by improving the structure compactness
    • …
    corecore